Using Motion Planning for Knot Untangling
نویسندگان
چکیده
In this paper we investigate the application of motion planning techniques to the untangling of mathematical knots. Knot untangling can be viewed as a high-dimensional planning problem in reparametrizable configuration spaces. In the past, simulated annealing and other energy minimization methods have been used to find knot untangling paths. We have developed a probabilistic planner that is capable of untangling knots described by over 400 variables. We have tested on known difficult benchmarks in this area and untangled them more quickly than has been achieved with minimization in the literature. In this work, the use of motion planning techniques is critical for the untangling. Our planner defines local goals and makes combined use of energy minimization and randomized tree-based planning. We also show how to produce candidates with a minimal number of segments for a given knot. The planner developed in this work is novel in that it is used to study issues arising in practical motion planning for high-dimensional and reparametrizable geometry. The use of energy methods, local goals and tree-based expansion is also novel and may suggest solutions in other planning applications. Finally, we discuss some possible applications of our untangling planner in computational topology, in the study of DNA rings and protein folding and for planning with flexible robots. KEY WORDS—motion planning, knots, flexible objects, probabilistic methods
منابع مشابه
The roles of impact and inertia in the failure of a shoelace knot
The accidental untying of a shoelace while walking often occurs without warning. In this paper, we discuss the series of events that lead to a shoelace knot becoming untied. First, the repeated impact of the shoe on the floor during walking serves to loosen the knot. Then, the whipping motions of the free ends of the laces caused by the leg swing produce slipping of the laces. This leads to eve...
متن کاملMulti-scale, Reactive Motion Planning with Deformable Linear Objects
Focus Research dealing with the manipulation of flexible objects has been on for a while. Most of the existing motion-planning algorithms that determine a trajectory from a start to the goal state revolve around traditional sampling-based and feedback control methods. What has not been done so far is the realisation of desired goal states from different initial states through reactive, global p...
متن کاملHigh speed contouring enhanced with C2 PH quintic spline curves
PH curves; B-spline curves; Nodal points; CNC interpolators; Variable feedrate control; Contour error. Abstract This paper presents a C2 Pythagorean-Hodograph (PH) spline curve interpolator for high speed contouring applications. With the knot vector and control points given, the C2 PH quintic spline curve is a ‘‘good’’ interpolant to the nodal points of the cubic B-spline curve, with the same ...
متن کاملMobile Robot Online Motion Planning Using Generalized Voronoi Graphs
In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...
متن کاملUntangling the Influence of a Protein Knot on Folding.
Entanglement and knots occur across all aspects of the physical world. Despite the common belief that knots are too complicated for incorporation into proteins, knots have been identified in the native fold of a growing number of proteins. The discovery of proteins with this unique backbone characteristic has challenged the preconceptions about the complexity of biological structures, as well a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Robotics Res.
دوره 23 شماره
صفحات -
تاریخ انتشار 2004